Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 785
Filter
1.
Mol Biol Rep ; 51(1): 582, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678168

ABSTRACT

BACKGROUND: Hybridization associated with polyploidy studies is rare in the tropics. The genus Zygopetalum (Orchidaceae) was investigated here as a case study of Neotropical plants. In the rocky highlands of the Ibitipoca State Park (ISP), southeast Brazil, individuals with intermediate colors and forms between the species Z. maculatum and Z. triste were commonly identified. METHODS AND RESULTS: Chromosomal analysis and DNA quantity showed a uniform population. Regardless of the aspects related to the color and shape of floral structures, all individuals showed 2n = 96 chromosomes and an average of 14.05 pg of DNA. Irregularities in meiosis associated with chromosome number and C value suggest the occurrence of polyploidy. The genetic distance estimated using ISSR molecular markers revealed the existence of genetic variability not related to morphological clusters. Morphometric measurements of the flower pieces revealed that Z. maculatum shows higher variation than Z. triste although lacking a defined circumscription. CONCLUSION: The observed variation can be explained by the polyploid and phenotypic plasticity resulting from the interaction of the genotypes with the heterogeneous environments observed in this habitat.


Subject(s)
Genetic Variation , Orchidaceae , Phenotype , Polyploidy , Orchidaceae/genetics , Genetic Variation/genetics , Brazil , Chromosomes, Plant/genetics , Genotype , Flowers/genetics , Flowers/anatomy & histology , Microsatellite Repeats/genetics , Hybridization, Genetic/genetics
2.
BMC Plant Biol ; 24(1): 255, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594641

ABSTRACT

BACKGROUND: Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS: Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION: In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.


Subject(s)
Genome, Mitochondrial , Orchidaceae , Genome, Mitochondrial/genetics , Phylogeny , Mitochondria/genetics , DNA , Orchidaceae/genetics
3.
Int J Mol Sci ; 25(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38473912

ABSTRACT

Bulbophyllum is one of the largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae, including species of ornamental and medical importance. The lack of knowledge regarding the characterization of Bulbophyllum chloroplast (cp) genomes has imposed current limitations on our study. Here, we report the complete cp genomes of seven Bulbophyllum species, including B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste, and B. violaceolabellum, and compared with related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. A total of 28 Bulbophyllum cp genomes exhibit typical quadripartite structures with lengths ranging from 145,092 bp to 165,812 bp and a GC content of 36.60% to 38.04%. Each genome contained 125-132 genes, encompassing 74-86 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The genome arrangements, gene contents, and length were similar, with differences observed in ndh gene composition. It is worth noting that there were exogenous fragment insertions in the IR regions of B. crassipes. A total of 18-49 long repeats and 38-80 simple sequence repeats (SSRs) were detected and the single nucleotide (A/T) was dominant in Bulbophyllum cp genomes, with an obvious A/T preference. An analysis of relative synonymous codon usage (RSCU) revealed that leucine (Leu) was the most frequently used codon, while cysteine (Cys) was the least used. Six highly variable regions (rpl32-trnLUAG > trnTUGU-trnLUAA > trnFGAA-ndhJ > rps15-ycf1 > rbcL-accD > psbI-trnSGCU) and five coding sequences (ycf1 > rps12 > matK > psbK > rps15) were identified as potential DNA markers based on nucleotide diversity. Additionally, 31,641 molecular diagnostic characters (MDCs) were identified in complete cp genomes. A phylogenetic analysis based on the complete cp genome sequences and 68 protein-coding genes strongly supported that 28 Bulbophyllum species can be divided into four branches, sects. Brachyantha, Cirrhopetalum, and Leopardinae, defined by morphology, were non-monophyly. Our results enriched the genetic resources of Bulbophyllum, providing valuable information to illustrate the complicated taxonomy, phylogeny, and evolution process of the genus.


Subject(s)
Genome, Chloroplast , Orchidaceae , Phylogeny , Orchidaceae/genetics , Evolution, Molecular , Nucleotides
4.
Mol Genet Genomics ; 299(1): 13, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396305

ABSTRACT

Gamma (γ)-ray irradiation is one of the important modern breeding methods. Gamma-ray irradiation can affect the growth rate and other characteristics of plants. Plant growth rate is crucial for plants. In horticultural crops, the growth rate of plants is closely related to the growth of leaves and flowering time, both of which have important ornamental value. In this study, 60Co-γ-ray was used to treat P. equestris plants. After irradiation, the plant's leaf growth rate increased, and sugar content and antioxidant enzyme activity increased. Therefore, we used RNA-seq technology to analyze the differential gene expression and pathways of control leaves and irradiated leaves. Through transcriptome analysis, we investigated the reasons for the rapid growth of P. equestris leaves after irradiation. In the analysis, genes related to cell wall relaxation and glucose metabolism showed differential expression. In addition, the expression level of genes encoding ROS scavenging enzyme synthesis regulatory genes increased after irradiation. We identified two genes related to P. equestris leaf growth using VIGS technology: PeNGA and PeEXPA10. The expression of PeEXPA10, a gene related to cell wall expansion, was down-regulated, cell wall expansion ability decreased, cell size decreased, and leaf growth rate slowed down. The TCP-NGATHA (NGA) molecular regulatory module plays a crucial role in cell proliferation. When the expression of the PeNGA gene decreases, the leaf growth rate increases, and the number of cells increases. After irradiation, PeNGA and PeEXPA10 affect the growth of P. equestris leaves by influencing cell proliferation and cell expansion, respectively. In addition, many genes in the plant hormone signaling pathway show differential expression after irradiation, indicating the crucial role of plant hormones in plant leaf growth. This provides a theoretical basis for future research on leaf development and biological breeding.


Subject(s)
Orchidaceae , Plant Breeding , Gene Expression Profiling , Genes, Plant , RNA-Seq , Antioxidants/metabolism , Orchidaceae/genetics , Orchidaceae/metabolism , Plant Leaves , Gene Expression Regulation, Plant , Transcriptome/genetics
5.
J Insect Sci ; 24(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38387434

ABSTRACT

Gastrodia elata Blume, a valuable traditional Chinese medicine with significant clinical and nutritional importance, is a fungal heterotrophic orchid. We present the first report of the mitochondrial genome structure and characteristics of 3 Scarabaeidae pests affecting G. elata: Sophrops peronosporus Gu & Zhang, Anomala rufiventris Kollar & Redtenbacher, and Callistethus plagiicollis Fairmaire. Each mitogenome contained 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a control region, with no gene rearrangements observed. All 21 tRNAs, except trnS1 that lacks a dihydrouridine, had a stable cloverleaf secondary structure. Maximum likelihood and Bayesian inference analyses based on the 13 PCGs produced 2 topologically similar phylogenetic trees, both of with high nodal support. Larvae of these Scarabaeidae pests cause substantial damage by gnawing on the tubers and roots of G. elata, leading to reduced yield and compromised quality. These findings contribute to phylogenetic studies of Scarabaeidae, expand knowledge of G. elata pests, and offer valuable reference materials for their identification and control.


Subject(s)
Asparagales , Coleoptera , Gastrodia , Genome, Mitochondrial , Orchidaceae , Animals , Coleoptera/genetics , Gastrodia/chemistry , Gastrodia/genetics , Orchidaceae/genetics , Asparagales/genetics , Phylogeny , Bayes Theorem
6.
Heredity (Edinb) ; 132(4): 163-178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38302667

ABSTRACT

Ornamental orchid breeding programs have been conducted to develop commercially valuable cultivars with improved characteristics of commercial interest, such as size, flower color, pattern, shape, and resistance to pathogens. Conventional breeding, including sexual hybridization followed by selection of desirable characteristics in plants, has so far been the main method for ornamental breeding, but other techniques, including mutation induction by polyploidization and gamma irradiation, and biotechnological techniques, such as genetic transformation, have also been studied and used in ornamental breeding programs. Orchids are one of the most commercially important families in floriculture industry, having very particular reproductive biology characteristics and being a well-studied group of ornamentals in terms of genetic improvement. The present review focuses on the conventional and biotechnological techniques and approaches specially employed in breeding Phalaenopsis orchids, the genus with highest worldwide importance as an ornamental orchid, highlighting the main limitations and strengths of the approaches. Furthermore, new opportunities and future prospects for ornamental breeding in the CRISPR/Cas9 genome editing era are also discussed. We conclude that conventional hybridization remains the most used method to obtain new cultivars in orchids. However, the emergence of the first biotechnology-derived cultivars, as well as the new biotechnological tools available, such as CRISPR-Cas9, rekindled the full potential of biotechnology approaches and their importance for improve ornamental orchid breeding programs.


Subject(s)
Orchidaceae , Humans , Orchidaceae/genetics , Plant Breeding/methods , Biotechnology/methods , Plants/genetics , Flowers/genetics
7.
New Phytol ; 242(2): 700-716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382573

ABSTRACT

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Subject(s)
Climate , Orchidaceae , Australia , Phylogeny , Phylogeography , Orchidaceae/genetics
8.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338856

ABSTRACT

Epipogium roseum, commonly known as one of the ghost orchids due to its rarity and almost transparent color, is a non-photosynthetic and fully mycoheterotrophic plant. Given its special nutritional strategies and evolutionary significance, the mitogenome was first characterized, and three plastomes sampled from Asia were assembled. The plastomes were found to be the smallest among Orchidaceae, with lengths ranging from 18,339 to 19,047 bp, and exhibited high sequence variety. For the mitogenome, a total of 414,552 bp in length, comprising 26 circular chromosomes, were identified. A total of 54 genes, including 38 protein-coding genes, 13 tRNA genes, and 3 rRNA genes, were annotated. Multiple repeat sequences spanning a length of 203,423 bp (45.47%) were discovered. Intriguingly, six plastid regions via intracellular gene transfer and four plastid regions via horizontal gene transfer to the mitogenome were observed. The phylogenomics, incorporating 90 plastomes and 56 mitogenomes, consistently revealed the sister relationship of Epipogium and Gastrodia, with a bootstrap percentage of 100%. These findings shed light on the organelle evolution of Orchidaceae and non-photosynthetic plants.


Subject(s)
Genome, Plastid , Orchidaceae , Phylogeny , Plastids , Orchidaceae/genetics , Asia , Evolution, Molecular
9.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396732

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC) gene family plays a crucial role in both plant growth and response to abiotic stress. Approximately half of the Orchidaceae species are estimated to perform CAM pathway, and the availability of sequenced orchid genomes makes them ideal subjects for investigating the PEPC gene family in CAM plants. In this study, a total of 33 PEPC genes were identified across 15 orchids. Specifically, one PEPC gene was found in Cymbidium goeringii and Platanthera guangdongensis; two in Apostasia shenzhenica, Dendrobium chrysotoxum, D. huoshanense, Gastrodia elata, G. menghaiensis, Phalaenopsis aphrodite, Ph. equestris, and Pl. zijinensis; three in C. ensifolium, C. sinense, D. catenatum, D. nobile, and Vanilla planifolia. These PEPC genes were categorized into four subgroups, namely PEPC-i, PEPC-ii, and PEPC-iii (PTPC), and PEPC-iv (BTPC), supported by the comprehensive analyses of their physicochemical properties, motif, and gene structures. Remarkably, PEPC-iv contained a heretofore unreported orchid PEPC gene, identified as VpPEPC4. Differences in the number of PEPC homolog genes among these species were attributed to segmental duplication, whole-genome duplication (WGD), or gene loss events. Cis-elements identified in promoter regions were predominantly associated with light responsiveness, and circadian-related elements were observed in each PEPC-i and PEPC-ii gene. The expression levels of recruited BTPC, VpPEPC4, exhibited a lower expression level than other VpPEPCs in the tested tissues. The expression analyses and RT-qPCR results revealed diverse expression patterns in orchid PEPC genes. Duplicated genes exhibited distinct expression patterns, suggesting functional divergence. This study offered a comprehensive analysis to unveil the evolution and function of PEPC genes in Orchidaceae.


Subject(s)
Orchidaceae , Phosphoenolpyruvate Carboxylase , Humans , Phosphoenolpyruvate Carboxylase/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Orchidaceae/genetics , Orchidaceae/metabolism , Plants/metabolism , Base Sequence , Phylogeny
10.
BMC Plant Biol ; 24(1): 31, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182989

ABSTRACT

BACKGROUND: The orchids of the subtribe Coelogyninae are among the most morphologically diverse and economically important groups within the subfamily Epidendroideae. Previous molecular studies have revealed that Coelogyninae is an unambiguously monophyletic group. However, intergeneric and infrageneric relationships within Coelogyninae are largely unresolved. There has been long controversy over the classification among the genera within the subtribe. RESULTS: The complete chloroplast (cp.) genomes of 15 species in the subtribe Coelogyninae were newly sequenced and assembled. Together with nine available cp. genomes in GenBank from representative clades of the subtribe, we compared and elucidated the characteristics of 24 Coelogyninae cp. genomes. The results showed that all cp. genomes shared highly conserved structure and contained 135 genes arranged in the same order, including 89 protein-coding genes, 38 tRNAs, and eight rRNAs. Nevertheless, structural variations in relation to particular genes at the IR/SC boundary regions were identified. The diversification pattern of the cp. genomes showed high consistency with the phylogenetic placement of Coelogyninae. The number of different types of SSRs and long repeats exhibited significant differences in the 24 Coelogyninae cp. genomes, wherein mononucleotide repeats (A/T), and palindromic repeats were the most abundant. Four mutation hotspot regions (ycf1a, ndhF-rp132, psaC-ndhE, and rp132-trnL) were determined, which could serve as effective molecular markers. Selection pressure analysis revealed that three genes (ycf1a, rpoC2 and ycf2 genes) might have experienced apparent positive selection during the evolution. Using the alignments of whole cp. genomes and protein-coding sequences, this study presents a well-resolved phylogenetic framework of Coelogyninae. CONCLUSION: The inclusion of 55 plastid genome data from a nearly complete generic-level sampling provide a comprehensive view of the phylogenetic relationships among genera and species in subtribe Coelogyninae and illustrate the diverse genetic variation patterns of plastid genomes in this species-rich plant group. The inferred relationships and informally recognized major clades within the subtribe are presented. The genetic markers identified here will facilitate future studies on the genetics and phylogeny of subtribe Coelogyninae.


Subject(s)
Orchidaceae , Phylogeny , Orchidaceae/genetics , Genomics , Chloroplasts/genetics , Evolution, Molecular
11.
New Phytol ; 241(3): 1321-1333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37847353

ABSTRACT

Oceanic islands offer valuable natural laboratories for studying evolution. The Izu Islands, with their recent geological origin, provide an exceptional opportunity to explore the initial evolution on oceanic islands. Another noteworthy aspect is the absence of bumblebee species on most Izu Islands. We used ecological, morphological, and molecular data to investigate the impact of bumblebee absence on the evolution of two closely related orchid species, Goodyera henryi and Goodyera similis, focusing on Kozu Island, the Izu Islands. Our investigation revealed that while G. henryi exclusively relies on a bumblebee species for pollination on the mainland, G. similis is pollinated by scoliid wasps on both the mainland and the island. Intriguingly, all specimens initially categorized as G. henryi on Kozu Island are hybrids of G. henryi and G. similis, leading to the absence of pure G. henryi distribution on the island. These hybrids are pollinated by the scoliid wasp species that also pollinates G. similis on the island. The absence of bumblebees might result in sporadic and inefficient pollination of G. henryi by scoliid wasps, consequently promoting hybrid proliferation on the island. Our findings suggest that the absence of bumblebees can blur plant species boundaries.


Subject(s)
Orchidaceae , Wasps , Animals , Bees , Flowers , Pollination , Plants , Orchidaceae/genetics
12.
Methods Mol Biol ; 2732: 67-81, 2024.
Article in English | MEDLINE | ID: mdl-38060118

ABSTRACT

In nature, mycorrhizal association with soil-borne fungi is indispensable for orchid species. Compatible mycorrhizal fungi form endo-mycorrhizal structures in orchid cells, and the fungal structures are digested in orchid cells to be supplied to orchids as nutrition. Because orchid seeds lack the reserves for germination, they keep receiving nutrition through mycorrhizal formation from seed germination until nonphotosynthetic young seedlings develop leaves and become photoautotrophic. Seeds of all orchids germinate with the help of their own fungal partners, and therefore, specific partnership has been acquired in a long evolutionary history between orchids and fungi. Assuming that horizontal transmission of viruses may occur in such a close relationship, we are focusing on viruses that infect orchids and their mycorrhizal fungi. We prepared aseptically germinated orchid plants (i.e., fungi-free plants) together with pure-cultured fungal isolates and conducted transcriptome analyses (RNA-seq) by next-generation sequencing (NGS) approach. To reconstruct virus-related sequences that would have been present in the RNA sample of interest, de novo assembly process is required using short read sequences obtained from RNA-seq. In the previous version of our protocol (see Viral Metagenomics, first edition 2018), virus searches were conducted using contig sets constructed by a single assembler, but this time we devised a method to construct more reliable contigs using multiple assemblers and again reinvestigated that viruses could be detected. Because the virus detection efficiency and number of detected virus species clearly differed depending on the assembly pipeline and the number of the input data, multiple methods should be used to identify viral infection, if possible.


Subject(s)
Mycorrhizae , Orchidaceae , Viruses , Mycorrhizae/genetics , Symbiosis/genetics , Phylogeny , Orchidaceae/genetics , Orchidaceae/microbiology , Viruses/genetics
13.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068950

ABSTRACT

Despite extensive research on orchid reproductive strategies, the genetic studies of sex differentiation in the orchid family are still lacking. In this study, we compared three sexual phenotypes of Cymbidium tortisepalum bisexual flowers as well as female and male unisexual mutants. Through comparative transcriptomes, we analyzed the sex-biased differentially expressed genes (DEGs) and gene co-expression networks of sex organs (gynostemium and ovary) among them, identified the candidate genes of sex differentiation, and validated their expression by qRT-PCR. The C. tortisepalum unisexual mutants with degenerated phenotypes were compared to the bisexual plants with respect to both the flower organs and plant morphologies. Totally, 12,145, 10,789, and 14,447 genes were uniquely expressed in the female, male, and hermaphrodite sex organs, respectively. A total of 4291 sex-biased DEGs were detected among them, with 871, 2867, and 1937 DEGs in the comparisons of bisexual vs. female, bisexual vs. male, and male vs. female flowers, respectively. Two co-expressed network modules, with 81 and 419 genes were tightly correlated with female sexual traits, while two others with 265 and 135 genes were highly correlated with male sexual traits. Two female-biased hub genes (CtSDR3b and CtSDR3b-like) nested in the female modules, the homologs of maize sex determinant tasselseed2, may control the feminization of C. tortisepalum. At the same time, two male-biased hub genes (CtYAB2 and CtYAB5) nested in the male modules, the homologs of grape sex determinant VviYABBY3, may control the androphany of C. tortisepalum. This study discovered the molecular regulation networks and proposed a model for orchid sex differentiation, therefore providing for the first time the genetic basis for the sex separation in the orchid family.


Subject(s)
Orchidaceae , Sexual and Gender Minorities , Female , Humans , Transcriptome , Gene Regulatory Networks , Flowers/genetics , Orchidaceae/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling
14.
BMC Genomics ; 24(1): 749, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057701

ABSTRACT

BACKGROUND: Chiloschista (Orchidaceae, Aeridinae) is an epiphytic leafless orchid that is mainly distributed in tropical or subtropical forest canopies. This rare and threatened orchid lacks molecular resources for phylogenetic and barcoding analysis. Therefore, we sequenced and assembled seven complete plastomes of Chiloschista to analyse the plastome characteristics and phylogenetic relationships and conduct a barcoding investigation. RESULTS: We are the first to publish seven Chiloschista plastomes, which possessed the typical quadripartite structure and ranged from 143,233 bp to 145,463 bp in size. The plastomes all contained 120 genes, consisting of 74 protein-coding genes, 38 tRNA genes and eight rRNA genes. The ndh genes were pseudogenes or lost in the genus, and the genes petG and psbF were under positive selection. The seven Chiloschista plastomes displayed stable plastome structures with no large inversions or rearrangements. A total of 14 small inversions (SIs) were identified in the seven Chiloschista plastomes but were all similar within the genus. Six noncoding mutational hotspots (trnNGUU-rpl32 > rpoB-trnCGCA > psbK-psbI > psaC-rps15 > trnEUUC-trnTGGU > accD-psaI) and five coding sequences (ycf1 > rps15 > matK > psbK > ccsA) were selected as potential barcodes based on nucleotide diversity and species discrimination analysis, which suggested that the potential barcode ycf1 was most suitable for species discrimination. A total of 47-56 SSRs and 11-14 long repeats (> 20 bp) were identified in Chiloschista plastomes, and they were mostly located in the large single copy intergenic region. Phylogenetic analysis indicated that Chiloschista was monophyletic. It was clustered with Phalaenopsis and formed the basic clade of the subtribe Aeridinae with a moderate support value. The results also showed that seven Chiloschista species were divided into three major clades with full support. CONCLUSION: This study was the first to analyse the plastome characteristics of the genus Chiloschista in Orchidaceae, and the results showed that Chiloschista plastomes have conserved plastome structures. Based on the plastome hotspots of nucleotide diversity, several genes and noncoding regions are suitable for phylogenetic and population studies. Chiloschista may provide an ideal system to investigate the dynamics of plastome evolution and DNA barcoding investigation for orchid studies.


Subject(s)
Genome, Chloroplast , Genome, Plastid , Orchidaceae , Phylogeny , DNA Barcoding, Taxonomic , Orchidaceae/genetics , Nucleotides
15.
BMC Plant Biol ; 23(1): 586, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37993773

ABSTRACT

BACKGROUND: Mitochondrial genomes are essential for deciphering the unique evolutionary history of seed plants. However, the rules of their extreme variation in genomic size, multi-chromosomal structure, and foreign sequences remain unresolved in most plant lineages, which further hindered the application of mitogenomes in phylogenetic analyses. RESULTS: Here, we took Dendrobium (Orchidaceae) which shows the great divergence of morphology and difficulty in species taxonomy as the study focus. We first de novo assembled two complete mitogenomes of Dendrobium wilsonii and Dendrobium henanense that were 763,005 bp and 807,551 bp long with multichromosomal structures. To understand the evolution of Dendrobium mitogenomes, we compared them with those of four other orchid species. The results showed great variations of repetitive and chloroplast-derived sequences in Dendrobium mitogenomes. Moreover, the intergenic content of Dendrobium mitogenomes has undergone expansion during evolution. We also newly sequenced mitogenomes of 26 Dendrobium species and reconstructed phylogenetic relationships of Dendrobium based on genomic mitochondrial and plastid data. The results indicated that the existence of chloroplast-derived sequences made the mitochondrial phylogeny display partial characteristics of the plastid phylogeny. Additionally, the mitochondrial phylogeny provided new insights into the phylogenetic relationships of Dendrobium species. CONCLUSIONS: Our study revealed the evolution of Dendrobium mitogenomes and the potential of mitogenomes in deciphering phylogenetic relationships at low taxonomic levels.


Subject(s)
Dendrobium , Genome, Mitochondrial , Orchidaceae , Phylogeny , Orchidaceae/genetics , Dendrobium/genetics , Genome, Mitochondrial/genetics , Genomics/methods , Base Sequence
16.
BMC Plant Biol ; 23(1): 545, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936061

ABSTRACT

BACKGROUND: The orchid industry has seen a recent surge in export values due to the floral morphology and versatile applications of orchids in various markets for medicinal, food additive, and cosmetic usages. However, plant-related diseases, including the yellow leaf disease caused by Fusarium solani, have caused significant losses in the production value of Phalaenopsis (up to 30%). RESULTS: In this study, 203 Phalaenopsis cultivars were collected from 10 local orchid nurseries, and their disease severity index and correlation with flower size were evaluated. Larger flowers had weaker resistance to yellow leaf disease, and smaller flowers had stronger resistance. For the genetic relationship of disease resistance to flower size, the genetic background of all cultivars was assessed using OrchidWiz Orchid Database Software and principal component analysis. In addition, we identified the orthologous genes of BraTCP4, namely PeIN6, PeCIN7, and PeCIN8, which are involved in resistance to pathogens, and analyzed their gene expression. The expression of PeCIN8 was significantly higher in the most resistant cultivars (A7403, A11294, and A2945) relative to the most susceptible cultivars (A10670, A6390, and A10746). CONCLUSIONS: We identified a correlation between flower size and resistance to yellow leaf disease in Phalaenopsis orchids. The expression of PeCIN8 may regulate the two traits in the disease-resistant cultivars. These findings can be applied to Phalaenopsis breeding programs to develop resistant cultivars against yellow leaf disease.


Subject(s)
Orchidaceae , Orchidaceae/genetics , Orchidaceae/metabolism , Plant Breeding , Flowers/genetics , Flowers/metabolism , Plant Leaves/genetics , Phenotype
17.
Transgenic Res ; 32(6): 547-560, 2023 12.
Article in English | MEDLINE | ID: mdl-37851307

ABSTRACT

Crassulacean acid metabolism (CAM) is one of three major models of carbon dioxide assimilation pathway with better water-use efficiency and slower photosynthetic efficiency in photosynthesis. Previous studies indicated that the gene of sweet pepper plant ferredoxin-like protein (PFLP) shows high homology to the ferredoxin-1(Fd-1) family that belongs to photosynthetic type Fd and involves in photosystem I. It is speculated that overexpressing pflp in the transgenic plant may enhance photosynthetic efficiency through the electron transport chain (ETC). To reveal the function of PFLP in photosynthetic efficiency, pflp transgenic Phalaenopsis, a CAM plant, was generated to analyze photosynthetic markers. Transgenic plants exhibited 1.2-folds of electron transport rate than that of wild type (WT), and higher CO2 assimilation rates up to 1.6 and 1.5-folds samples at 4 pm and 10 pm respectively. Enzyme activity of phosphoenolpyruvate carboxylase (PEPC) was increased to 5.9-folds in Phase III, and NAD+-linked malic enzyme (NAD+-ME) activity increased 1.4-folds in Phase IV in transgenic plants. The photosynthesis products were analyzed between transgenic plants and WT. Soluble sugars contents such as glucose, fructose, and sucrose were found to significantly increase to 1.2, 1.8, and 1.3-folds higher in transgenic plants. The starch grains were also accumulated up to 1.4-folds in transgenic plants than that of WT. These results indicated that overexpressing pflp in transgenic plants increases carbohydrates accumulation by enhancing electron transport flow during photosynthesis. This is the first evidence for the PFLP function in CAM plants. Taken altogether, we suggest that pflp is an applicable gene for agriculture application that enhances electron transport chain efficiency during photosynthesis.


Subject(s)
Ferredoxins , Orchidaceae , Ferredoxins/genetics , Ferredoxins/metabolism , Orchidaceae/genetics , Orchidaceae/metabolism , NAD/metabolism , Photosynthesis/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Carbohydrates
18.
BMC Plant Biol ; 23(1): 492, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833649

ABSTRACT

BACKGROUND: Orchids (Cymbidium spp.) exhibit significant variations in floral morphology, pollinator relations, and ecological habitats. Due to their exceptional economic and ornamental value, Cymbidium spp. have been commercially cultivated for centuries. SSR markers are extensively used genetic tools for biology identification and population genetics analysis. RESULT: In this study, nine polymorphic EST-SSR loci were isolated from Cymbidium goeringii using RNA-Seq technology. All nine SSR loci showed transferability in seven other congeneric species, including 51 cultivars. The novel SSR markers detected inter-species gene flow among the Cymbidium species and intra-species sub-division of C. goeringii and C. ensifolium, as revealed by neighborhood-joining and Structure clustering analyses. CONCLUSION: In this study, we developed nine microsatellites using RNA-Seq technology. These SSR markers aided in detecting potential gene flow among Cymbidium species and identified the intra-species sub-division of C. goeringii and C. ensifolium.


Subject(s)
Genetics, Population , Orchidaceae , Hybridization, Genetic , Nucleic Acid Hybridization , Orchidaceae/genetics , Microsatellite Repeats/genetics
19.
Int J Mol Sci ; 24(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37833887

ABSTRACT

Epidendrum, one of the three largest genera of Orchidaceae, exhibits significant horticultural and ornamental value and serves as an important research model in conservation, ecology, and evolutionary biology. Given the ambiguous identification of germplasm and complex evolutionary relationships within the genus, the complete plastome of this genus (including five species) were firstly sequenced and assembled to explore their characterizations. The plastomes exhibited a typical quadripartite structure. The lengths of the plastomes ranged from 147,902 bp to 150,986 bp, with a GC content of 37.16% to 37.33%. Gene annotation revealed the presence of 78-82 protein-coding genes, 38 tRNAs, and 8 rRNAs. A total of 25-38 long repeats and 130-149 SSRs were detected. Analysis of relative synonymous codon usage (RSCU) indicated that leucine (Leu) was the most and cysteine (Cys) was the least. The consistent and robust phylogenetic relationships of Epidendrum and its closely related taxa were established using a total of 43 plastid genomes from the tribe Epidendreae. The genus Epidendrum was supported as a monophyletic group and as a sister to Cattleya. Meanwhile, four mutational hotspots (trnCGCA-petN, trnDGUC-trnYGUA, trnSGCU-trnGUCC, and rpl32-trnLUAG) were identified for further phylogenetic studies. Our analysis demonstrates the promising utility of plastomes in inferring the phylogenetic relationships of Epidendrum.


Subject(s)
Genome, Plastid , Orchidaceae , Orchidaceae/genetics , Phylogeny , Evolution, Molecular , Base Sequence
20.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37833995

ABSTRACT

Trichoglottis exhibits a range of rich variations in colors and shapes of flower and is a valuable ornamental orchid genus. The genus Trichoglottis has been expanded by the inclusion of Staurochilus, but this Trichoglottis sensu lato (s.l.) was recovered as a non-monophyletic genus based on molecular sequences from one or a few DNA regions. Here, we present phylogenomic data sets, incorporating complete plastome sequences from seven species (including five species sequenced in this study) of Trichoglottis s.l. (including two species formerly treated as Staurochilus), to compare plastome structure and to reconstruct the phylogenetic relationships of this genus. The seven plastomes possessed the typical quadripartite structure of angiosperms and ranged from 149,402 bp to 149,841 bp with a GC content of 36.6-36.7%. These plastomes contain 120 genes, which comprise 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes, all ndh genes were pseudogenized or lost. A total of 98 (T. philippinensis) to 134 (T. ionosma) SSRs and 33 (T. subviolacea) to 46 (T. ionosma) long repeats were detected. The consistent and robust phylogenetic relationships of Trichoglottis were established using a total of 25 plastid genomes from the Aeridinae subtribe. The genus Trichoglottis s.l. was strongly supported as a monophyletic group, and two species formerly treated as Staurochilus were revealed as successively basal lineages. In addition, five mutational hotspots (trnNGUU-rpl32, trnLUAA, trnSGCU-trnGUCC, rbcL-accD, and trnTGGU-psbD) were identified based on the ranking of PI values. Our research indicates that plastome data is a valuable source for molecular identification and evolutionary studies of Trichoglottis and its related genera.


Subject(s)
Genome, Plastid , Orchidaceae , Phylogeny , Orchidaceae/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...